
INDY-02-PlaylistSyncer
SOFTWARE DESIGN DOCUMENT (SDD)

CS4850-02

Spring 2024

Professor Perry

2/13/2024

Team

Roles Name Major responsibilities Cell Phone / Alt Email

Team leader Nikita Smith Developer, Manager 678-628-6076

Nikitasmith6@gmail.com

Team

members

Ben Pallotti Documentation, Developer 770-906-3367
ben.pallotti@gmail.com

Josh Poore Programmer, Developer 770-337-5477

joshua.poore@gmail.com

Advisor /

Instructor

Sharon Perry Facilitate project progress;

advise on project planning and

management.

770-329-3895

mailto:Nikitasmith6@gmail.com
mailto:ben.pallotti@gmail.com
mailto:joshua.poore@gmail.com

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 2 of 13

Table Of Contents

1. INTRODUCTION ... 3

1.1. DOCUMENT OUTLINE .. 3
1.2. DOCUMENT DESCRIPTION ... 4

1.2.1. Introduction ... 4
1.2.2. System Overview .. 4

2. DESIGN CONSIDERATIONS ... 4

2.1. ASSUMPTIONS AND DEPENDENCIES ... 4
2.2. GENERAL CONSTRAINTS ... 5
2.3. GOALS AND GUIDELINES ... 5
2.4. DEVELOPMENT METHODS ... 5

3. ARCHITECTURAL STRATEGIES .. 5

4. SYSTEM ARCHITECTURE .. 7

4.1. SUBSYSTEM ARCHITECTURE ... 7

5. POLICIES AND TACTICS .. 8

5.1. POLICY 1, COMPLIER - ... 8
5.2. POLICY 2, CODING GUIDELINES/CONVENTIONS - ... 8
5.3. POLICY 3, ENSURING REQUIREMENTS TRACEABILITY - .. 8
5.4. POLICY 4, SOFTWARE TESTING - .. 8
5.5. POLICY 5, SOFTWARE MAINTENANCE - .. 9

6. DETAILED SYSTEM DESIGN ... 9

6.1. CLASSIFICATION ... 9
6.2. DEFINITION ... 9
6.3. RESPONSIBILITIES ... 9
6.4. CONSTRAINTS ... 10
6.5. COMPOSITION ... 10
6.6. USES/INTERACTIONS ... 10
6.7. RESOURCES .. 11
6.8. PROCESSING.. 11
6.9. INTERFACE/EXPORTS .. 11
6.10. DETAILED SUBSYSTEM DESIGN ... 12

7. GLOSSARY ... 13

8. BIBLIOGRAPHY .. 13

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 3 of 13

1. Introduction
The following is the software design specifications document for the PlaylistSyncer

Android and iOS application. This document will outline the system's architecture and

associated strategies utilized in developing this application given the complex goal of creating

data interoperability between several streaming APIs.

1.1. Document Outline

• Introduction

• System Overview

• Design Considerations

o Assumptions and Dependencies

o General Constraints

o Goals and Guidelines

o Development Methods

• Architectural Strategies

o 3.1: Programming Language/Framework

o 3.2: API Integration

o 3.3: Data Management

o 3.4: User Interface

o 3.5: Error Handling

o 3.6: Concurrency/Synchronization

o 3.7: Version Control

• System Architecture

o 4.1: Subsystem Architecture

• Policies and Tactics

o Policy 1: Complier

o Policy 2: Coding Guidelines/Conventions

o Policy 3: Ensuring Requirement Traceability

o Policy 4: Software Testing

o Policy 5: Software Maintenance

• Detailed System Design

o 6.1: Classification

o 6.2: Definition

o 6.3: Responsibilities

o 6.4: Constraints

o 6.5: Composition

o 6.6: Uses/Interactions

o 6.7: Resources

o 6.8: Processing

o 6.9: Interface/Exports

o 6.10: Detailed Subsystem Design

• Glossary

• Bibliography

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 4 of 13

1.2. Document Description

1.2.1. Introduction

This document will explain in detail our software architecture and design strategies for

developing and managing the PlaylistSyncer mobile application. This explanation will include

our strategies surrounding our usage of the Flutter framework, handling our development

process in a remote-centric environment, and breaking down our system architecture. Our

development team should use this document to develop the PlaylistSyncer application and

related software products and services. Readers should be familiar with our Software

Requirements and Specifications document before proceeding as many of the topics discussed

in this report relate to the requirements and application specifications outlined in the Software

Requirements and Specifications document.

The remainder of this report will discuss a set of topics that will act as the basis of our

application architecture including items such as the essential design constraints, strategies,

development policies, and system design. Our design constraints are primarily centered

around the usage of external platform APIs to service core functionality as well as the reliance

on mobile platforms for application execution. These considerations help inform our

architectural strategies for constructing the app. We will use Google’s Flutter framework for

cross platform development, API integration, user interfaces, as well as handle potential errors

and concurrency issues. Systematically we plan to use a set of API and user facing modules

that handle the communication and servicing of user requests in conjunction with handling

external API facing data handling commands. To maintain consistency and reliability in the

development process we have established a set of policies centered around code uniformity,

accurate commenting, and a focus on software testing.

1.2.2. System Overview

Our application is split into four specific subsections: authentication, playlist

acquisition, playlist generation, and the UI module. The Authentication module should

communicate with the user and streaming service servers to acquire access tokens to

authenticate our requests in the subsequent playlist acquisition and generation modules. The

playlist acquisition module uses user input and data from the authentication module to acquire

playlist data from the specified streaming service. Once this data is acquired it is fed into the

playlist generation module which handles all the necessary lookups and data processing to

generate a playlist compatible with the specified destination streaming service. The UI

module is responsible for communicating user input to all the other modules and displaying

any necessary data to the user because of the processing done by other modules. These

modules working together result in an app that allows users to authenticate their streaming

account and then subsequently transfer playlist data between them as is specified by the user.

2. Design Considerations

2.1. Assumptions and Dependencies

Our primary dependency is on the access to music streaming services and the ability to

accurately receive and send data to these platforms. This dependency also assumes that our

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 5 of 13

users will have accounts with at least 2 of the three supported streaming services.

Additionally, we depend on mobile devices with Android or iOS operating systems for

hosting our application and handling the transmission of application critical data through Wi-

Fi and cellular data networks. As a result of our reliance on streaming services, in the future

we may need to adjust our list of supported services to account for any listed services not

allowing for the request and generation of playlists by third-party applications such as our

app.

2.2. General Constraints

Given our usage of private user data, storing data securely is a key consideration along

with working with streaming services to verify our user account authentication systems match

their security standards. Additionally, as an extension of our application’s dependance on

Android and iOS, we are constrained by the policies and standards set by Google and Apple

respectively for apps hosted on their OS platforms. The low processing overhead of our app

should allow users of low-end mobile devices to still make usage of our app without any

studders or potential unresponsive app behaviors. From a user experience standpoint another

constraint to consider is the screen sizes used by our target mobile devices, as they dictate the

quality and quantity of information that can be shown to the user.

2.3. Goals and Guidelines

The software should be simple to use, responsive, and transparent in what actions the

software is performing at any given time. The UI should be accessible and purposeful,

allowing users to quickly navigate and fully understand all the accessible UI functions

immediately. This focus on simplification and transparency carries over to our system

architecture as well, as every module, function, and class should be easy to understand and

extend so developers can build the software efficiently. Furthermore, to remain in line with

our software goals, our system architecture should be as responsive as possible even if it

comes at a memory requirement cost.

2.4. Development Methods

Our team will utilize a scrum-based agile model with a focus of using stories, code

sprints, and rapid iteration to develop our application. This development model aligns with

our rapid development timeline and should allow our team members to get feedback on their

work and integrate features as quickly and often as possible.

3. Architectural Strategies

3.1. Programming Language/Framework

We have chosen Dart as our preferred coding language because it is the corresponding

coding language for Flutter. Flutter is a strong choice because it is an open-source codebase

that allows for application development that are compatible with both iOS and Android. It is

known for high performance and UI development tools that will allow us to freely develop

our application.

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 6 of 13

3.2. API Integration

We can integrate Spotify, Apple Music, and YouTube APIs by connecting to each

service and fetching playlist data. Getting the users data from these services will require

permission from the user, and can be done with OAuth (An open-source authorization service

that allows a user to share data with other sites, like how Gmail can be used to sign in to

LinkedIn, etc.)

3.3. Data Management:

The goal is to ensure that data is securely withheld within the app to maintain

playlists, user details, and login credentials whilst the app is open and running. Once the app

is closed, all data on playlists and login credentials will be deleted for safety purposes. We

plan to use local data stores to accomplish this.

3.4. User Interface:

Flutter can be used to create interfaces that are compatible with both iOS and Android.

The goal is to keep the interface simple enough for even the least tech-savvy users to use. It

must have minimal buttons and options, which will keep it simple and allow it to run without

delays or crashes.

3.5. Error Handling:

Error handling is essential to ensure the application can overcome common issues that

come with using APIs and/or data syncing. The errors that we are expecting to run into during

development are failed API calls and issues converting data, though the converting data errors

should be only an issue in early development. In case of a failed API call, the program will

attempt to send a new call; if several call attempts are made without a response, we will notify

the user with a UI message.

3.6. Concurrency/Synchronization:

Strategies for synchronization include making sure data stays the same across different

platforms to avoid redundancy and mistakes. Dart uses an async/await feature in Flutter to

allow for handling concurrent operations or tasks. We can also use data locking or other

synchronization protocols.

3.7. Version Control:

 GitHub is a reliable way to control versions and work on code between multiple

people. It uses branching and merging to organize new code or integrate code. Our plan for

ensuring that no merger issues occur is to have separate branches for each person and ensure

developers communicate their progress and work consistently. When a project build needs to

be made for testing or product release purposes, we will merge the separate branches to form

the final product. This process will be conducted on a scheduled basis to ensure all team

members are in sync with one another and the product's state.

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 7 of 13

4. System Architecture
There are several pieces of this system that we have decided to spilt into separate

subsystems. The names of these subsystems are as follows: Login & Password Handling,

Authentication, Displaying Screens, Transferring Data/Playlists, and the Handling of APIs.

The reason for so many subsystems is for us to easily be able to compartmentalize our

program. Each of these subsystems align with at least one of our functional requirements for

this program and are covered individually below.

Login & Password Handling entails each user being able to login to each of their

accounts, those being the Apple, YouTube, and Spotify music accounts. Currently, we plan to

not store user passwords and login details to avoid any security issues with storing their data,

though if we have time, it is something we plan to attempt to do. This subsystem is essential

to the rest of the overall program, as without it, we would not be able to access each user’s

information on their music platforms, which would, therefore, make it impossible to

accomplish the goal of this program, which is to transfer playlists from one music platform to

another.

Authentication has a similar purpose as the last subsystem, because without it we

would not be able to get the user’s data. This subsystem’s role is to establish communication

with the servers of each music platform using the login information provided by our users.

This will likely be done through each platform’s API, as we can ensure safe transfer of user

data this way, as our intended APIs use encryption for user data.

Displaying Screens is a subsystem that will allow us to display our application screens

onto our devices, whether this be an Android or iOS device. We plan to have 3 main screens,

those being the login screen, the transfer screen, and the settings screen. The login screen

serves the role of allowing users to login into their music platforms so our app can access their

data. The transfer screen serves the role of allowing users to select what platforms they are

transferring to and from. The settings screen allows users to customize their experience within

the app.

Transferring Data/Playlists is a subsystem that accomplishes our main goal for this

program, which is to transfer playlists from one platform to another. Cooperation from the

Handling of APIs and Login & Password subsection help to accomplish this. One of the main

things that this subsection will have to do is format the data that it receives from the API

subsection, i.e. the playlist data, to an acceptable form for the other APIs to handle as input

for their respective platforms. Section 4.1 of this document covers this more in-depth.

Handling of APIs, a subsystem, gets and sends data from and to each respective music

platform. This solely handles the retrieving and sending aspect of the data transfer process as

the actual data conversion is done in the Transferring Data/Playlist subsystem. That said, this

subsystem’s role is to get the playlist data from the user’s music platform account and to

create playlists on the account they are transferring their data to.

4.1. Subsystem Architecture

Transferring Data/Playlists has a few subsystems within itself. The first subsystem is

the conversion functions, which serve the role of converting the data we receive from the

APIs into applicable data for the creation of playlists using the other APIs. We plan to have a

master data class where we convert everything to and from, which will be of JSON format.

This will require at least 6 functions in the Handling of APIs subsystem: two for every music

platform, one for taking in data, and one for sending the data.

Commented [JP1]: Change

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 8 of 13

5. Policies and Tactics

5.1. Policy 1, Complier -

We plan to use Flutter’s compiler through Visual Studio Code as our compiler and

Integrated Development environment for the system's development. This is so we are more

easily able to fluidly change our development if we are to run into any problems during the

development cycle, for example one of our Dart APIs not working as intended. In a case like

this, we may need to pivot using a python or web-based API instead, hence why we are using

Visual Studio Code as it’s extension feature will help us to more smoothly transition if need

be.

5.2. Policy 2, Coding Guidelines/Conventions -

We want to make our code as readable as possible, so that if another one of the

members of our group needs to understand it, we do not need to waste time explaining it in

person. For this reason, we want to comment our code and compartmentalize as much of our

code as we can. For example, each function will have a chunk of comments above the

function definition itself, describing in at least surface level detail what the function does and

what it requires to work properly. In a case-by-case basis, if the function is more complex,

comments may be needed in the function code itself to clarify what is happening at certain

lines of code. Outside of these guidelines we will follow standard Dart syntax and coding

conventions as outlined in Dart’s programming documentation.

5.3. Policy 3, Ensuring Requirements Traceability -

We plan to have a 4–5-line block of comments before and after each requirement is

completed. Alternatively, developers may put comments at the top of each file, which states

what requirements (Ideally notated by number) are being worked on or contributed to in the

file. This could then be followed by a 1-line comment before each function that states what

requirement it belongs to. In the main file, we could have a master comment that states

whether a requirement has been completed in full or not and where all the pieces of said

requirement are.

5.4. Policy 4, Software Testing -

To test the software, both during development and after its development, we plan to

test it by using a few metrics. Firstly, we plan to test each of our modules after they are

complete through the usage of test cases, to make sure their inclusion in the final product

won’t cause some unforeseen issue that was overlooked. We will also test the efficiency of

each performance-critical function. This will help us gauge the best variation of said function

when we eventually get to the optimization stage of development. Finally, we plan to attempt

to have some black box testing by some of our fellow students, friends, and family members.

We will have anyone who wants to test it fill out a report on what issues they found and what

they liked about it as well.

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 9 of 13

5.5. Policy 5, Software Maintenance -

The software codebase will be maintained on a GitHub repository. This GitHub

repository will be a separate repository from any of our personal accounts and will be a

corporate account. This will allow us all to have a central location to access the program. Any

and all changes to the repository must come from a verified team member and contain a

concise description of what changes they have made.

6. Detailed System Design

6.1. Classification

Component Classification

Playlist Sync App Application/Main System

Playlist Retrieval Subsystem

Data Storage Subsystem

Synchronization Module

User Interface Subsystem

Authentication/Login Subsystem

Concurrency Management Module

6.2. Definition

Component Definition
Playlist Sync App Uses many components to synchronize applications from various

platforms.

Playlist Retrieval Manages retrieval of playlists from various platforms.

Data Storage Stores and manages playlist data.

Synchronization A module of data storage that ensures synchronization of local and

user endpoint playlist/login data.

User Interface Provides interactive and visual menu for user interaction.

Authentication/Login Authenticate logins and manage APIs that allow for permission to

login with another application.

Concurrency Management Manage concurrent operations to keep app performance optimal.

6.3. Responsibilities

Component Responsibilities
Playlist Sync App Transfer of playlists between Spotify, Apple Music, and YouTube,

ensuring data integrity and optimal user experience.

Playlist Retrieval Fetches playlist data from Spotify, Apple Music, YouTube based on
user API requests.

Data Storage Manage storage of playlist data by caching and indexing for easy,

efficient access.

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 10 of 13

Synchronization Prevent and resolve conflicts that come with storing data both

locally and remotely. Maintain consistency in data.

User Interface Allow users to browse, select, and manage their playlists.

Authentication/Login Securely verify user login and communicate with APIs of streaming

services via OAuth to grant permission for data exchanges.

Concurrency Management Ensure prop-er handling of concurrent operations so app is

responsive and high-performance.

6.4. Constraints

Component Constraints
Playlist Sync App Potentially limited by the capabilities and constraints of underlying

APIs. Requires internet connectivity for synchronization.

Playlist Retrieval Rate limits and usage restrictions imposed by Spotify, Apple Music,

and YouTube APIs. We must go by their API terms of service and

authentication requirements.

Data Storage Potential limits on data speed and storage capacity. Data must be

stored with integrity.

Synchronization Network bandwidth limitations, conflicts of going on and offline and

synching, and requires efficient code for data resolution.

User Interface Varying screen sizes can cause visual bugs or unappealing UI. Poor

optimization could lead to lag or crashes.

Authentication/Login Security best practices and encryption standards must be put in place
to keep login data secure, especially if they are being used on

multiple platforms.

Concurrency Management Data corruption and race conditions can occur when handling

concurrency, so data must be stored with appropriate CPU, memory,

bandwidth, etc.

6.5. Composition

Component Composition
Playlist Sync App Playlist Retrieval, Data Storage, Synchronization, User Interface,

Authentication/Login, and Concurrency Management.

Playlist Retrieval Spotify, Apple Music, and YouTube APIs and code methods that

process the transfers gracefully.

Data Storage Use of Local memory hosting to maintain data. Endpoint devices

will hold their data for synching.

Synchronization Channels between local and remote data storages to make source

data exchange maintains healthy synchronization.

User Interface Uses Flutter UI components to make a clean interface.

Authentication/Login Authorization protocols to establish secure connections with APIs.

Concurrency Management Dart uses an asynchronous programming model that we can use to

manage performance with ease.

6.6. Uses/Interactions

Component Uses/Interactions
Playlist Sync App Interactions with Playlist Retrieval, Data Storage, Synchronization,

User Interface, Authentication/Login, and Concurrency

Management.

Playlist Retrieval Interacts with Spotify, Apple Music, and YouTube APIs to fetch

playlist data.

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 11 of 13

Data Storage Interacts with the playlist retrieval and synchronization components

to store and retrieve playlist data.

Synchronization Goes with the data storage component to maintain consistent data

synch.

User Interface Requires interaction with all components because all use interaction

with the UI lead to a change in data.

Authentication/Login Interacts with all platform APIs to validate user credentials and

access playlist data.

Concurrency Management Data fetching, processing, and synchronization keeps operations
stable.

6.7. Resources

Component Resources
Playlist Sync App Resources include device memory and CPU usage during data sync

and UI rendering.

Playlist Retrieval Network bandwidth for making API requests to Spotify, Apple

Music, and YouTube retrieve playlist data, which could be subject to
API call limits.

Data Storage Disk space and memory are local storages that are used for storing

cached playlist data and user information.

Synchronization Uses network resources to transfer playlist data between the app and

the music platforms. These resources ensure efficient exchange and

reduce lag/latency.

User Interface Uses rendering resources for displaying UI visual elements and

handling user interactions, and these resources will

Authentication/Login Will require network resources for creating connections with

authentication server to verify tokens and credentials.

Concurrency Management Processor and memory resources are used to handle data processing

tasks, which will avoid race conditions and deadlock situations with

attentive management.

6.8. Processing

Component Duties/Processes

Playlist Sync App Using Synchronization algorithms, Flutter UI, concurrency, and

error-handling, the app synchronizes playlists data that was fetched

from APIs of YouTube, Spotify, and Apple Music.

Playlist Retrieval Fetches data from APIs of YouTube, Spotify, and Apple Music. We

can employ algorithms and HTTP requests

Due to the time at which this document was created, we did not feel as though we

could give an accurate estimation of the algorithms and processes that would be used for the

sections, which is why they are excluded here.

6.9. Interface/Exports

Component Interface/Exports
Playlist Sync App Classification: Application

Definition: Playlist synchronization.
Responsibilities: Manages components and stability.
Constraints: Resource usage, stability.
Composition: Flutter widgets and packages.

Uses: Relies on Dart and Flutter SDK for implementation.

Resources: Flutter’s runtime and network resources.

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 12 of 13

Processing: Dart async/await mechanism.

Interface: UI from Flutter widgets.

Playlist Retrieval Classification: Subsystem
Definition: Retrieves playlist data from external platforms APIs

using HTTP requests.
Responsibilities: Handle data retrieval using Dart.
Constraints: API requests can be limited. Network availability.
Composition: HTTP client libraries and Dart.

Uses: Dart uses HTTP client for API requests.

Resources: Network Bandwidth and API accessing.

Processing: Asynchronous data retrieval using Dart.

Interface: Dart.

Data Storage Classification: Subsystem
Definition: Hold data with the use of a Local Data Store.
Responsibilities: Use CRUD to maintain data.
Constraints: Storage space and potential data corruption.
Composition: Local Data Store.

Uses: Stores and retrieves data within the app using Local Data

Store APIs.

Resources: Disk space and memory.

Processing: Adding, altering, and removing data from databases in

Local Data Store.

Interface: Local Data Store API.

6.10. Detailed Subsystem Design

The above is a diagram of our intended modules and submodules including external and

internal facing modules. Each module interaction is displayed as a black pointed line. This

C:\Users\nikit\Downloads\INDY-02-PlaylistSyncer-Design(1).docxPage 13 of 13

diagram also includes our intended data stores as trace data interactions through the green

pointed interaction lines.

7. Glossary
Flutter: An open-source framework that allows for easy integration with iOS and Android.

Concurrency/Synchronization: Management of tasks that are executed simultaneously.

Version Control: A system that can track changes in different versions of code.

Dart: The programming language that corresponds with the Flutter framework.

API: Also known as Application Programming Interface, it is a set of tools that facilitates

communication between applications that otherwise would not be compatible.

Error Handling: The process of managing and responding to errors.

Subsystem: A smaller part of a larger system.

Module: A unit of software that performs a specific function. Made from functions, data

structures, and other elements.

Stories: A few sentences in simple language that outline the desired outcome.

8. Bibliography

Flutter. “Flutter Documentation.” Docs.flutter.dev, docs.flutter.dev/.

“Music_kit Example | Flutter Package.” Dart Packages, pub.dev/packages/music_kit/example.

Accessed 13 Feb. 2024.

“Spotify_sdk | Flutter Package.” Dart Packages, pub.dev/packages/spotify_sdk. Accessed 13 Feb.

2024.

“Youtube_data_api | Flutter Package.” Dart Packages, pub.dev/packages/youtube_data_api.

Accessed 13 Feb. 2024.

